
FPGA-based Accelerator for Post-Quantum
Signature Scheme SPHINCS-256

Dorian Amiet1, Andreas Curiger2 and Paul Zbinden1

1 IMES Institut für Mikroelektronik und Embedded Systems
HSR Hochschule für Technik, 8640 Rapperswil, Switzerland
damiet@hsr.ch, pzbinden@hsr.ch, https://imes.hsr.ch

2 Securosys SA, 8005 Zürich, Switzerland
curiger@securosys.ch, https://www.securosys.ch/

Abstract. In recent years, a substantial amount of research has been conducted and
progress made in the area of quantum computers. Small functional prototypes have
already been reported. If they scale as expected, they will eventually be able to
break current public-key cryptosystems. The goal of post-quantum cryptography is
to develop cryptographic systems that are secure against attacks originating from
both quantum and classical computers. Frequently referred post-quantum signature
schemes are based on the security of hash functions. A promising candidate in
this group is SPHINCS-256. This paper presents the first FPGA-based hardware
accelerator for SPHINCS-256. It can be implemented on an entry-level FPGA,
occupying roughly 19,000 LUTs, 38,000 FFs and 36 BRAMs. On a Kintex-7 Xilinx
FPGA, signing takes 1.53 milliseconds, and verification needs only 65 microseconds.
Area and throughput of the accelerator are in a range that outperform today’s
widely used RSA signature scheme. The performance can even keep up with ECDSA
accelerators. Hence, SPHINCS-256 is a hot candidate to replace RSA and ECDSA in
a post-quantum world.
Keywords: FPGA architecture · digital signature · post-quantum cryptography ·
SPHINCS-256 · computer science

1 Introduction
At the time of writing, it is still not clear whether large-scale quantum computers will ever
be feasible. Recent initial successes in the field suggest that they might become available
within the next decade or so [Mos15]. Today’s signature algorithms in use (RSA [RSA78]
and ECDSA [Nat09]) would be broken by quantum computers running Shor’s algorithm
[Sho97]. It will therefore be essential that all digital signing systems based on RSA or
ECDSA be replaced by a system which will resist a quantum computer attack before large
scale quantum computers become available. Several approaches which enable quantum
computer safe signing can be found in the literature. Most of these so-called post-quantum
signature schemes can be assigned to one of the following four groups [BL17]:

1. Lattice-based signature schemes: They are often favored as replacement candidates,
because operations are usually faster compared to ECDSA and RSA. In addition,
key and signature sizes are only moderately larger. However, their security level is
not at all clear, especially with respect to quantum computers.

2. Multivariate quadratic signature schemes: They exhibit a similar behavior as lattice
based schemes. Computation is fast, signature and key sizes are short, but for
security analysis they are even more complicated than lattice-based schemes.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 1, pp. 18–39
DOI:10.13154/tches.v2018.i1.18-39

mailto:damiet@hsr.ch
mailto:pzbinden@hsr.ch
mailto:curiger@securosys.ch
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i1.18-39

Dorian Amiet, Andreas Curiger and Paul Zbinden 19

3. Code-based signature schemes: They provide better prerequisites for a security
analysis than both of the schemes above, but involved key sizes are high (in the order
of megabytes), which makes their implementation in some cases infeasible.

4. Hash-based signature schemes: They seem to be the most promising candidates as
key sizes and processing speed are reasonable and the signature schemes appear
relatively simple. They are better suited for a security analysis, are less susceptible
to implementation errors, and generally receive better user confidence. However,
most of them are state-based. This means that a private key is attached to a limited
number of states, and each state can be used only once to generate just one signature.
A signer hence needs to trace, which states have already been used, because using a
state twice would break the signature scheme.

Recently, Bernstein at al. presented a stateless hash-based signature scheme called
SPHINCS [BHH+15]. The stateless classification is guided by two main ideas: First, a
private key includes a high number of states. During signing, a state is chosen at random,
such that picking one state more than once is very unlikely. Second, a mechanism is
in place ensuring that even if a state is picked more than once, the signature scheme
will still be safe. For the signature scheme, the SPHINCS authors suggest a parameter
set where most data words are aligned to 256 bits. A detailed security analysis of this
SPHINCS-256 scheme exhibits a security level of 256 bits on classical and 128 bits on
quantum computers. The price for being stateless and providing 256 bits of security
is being paid with a longer signature size of 41 kB and an increased computation time
for signing. In addition to a reference software implementation, the SPHINCS authors
provide an optimized implementation generating “hundreds of signatures per second” on a
quad-core vector processor.

Hundreds of signatures per second may be an acceptable throughput for a software-
based signing system. Even when classical signature schemes such as RSA and ECDSA
are in use, software-based signing systems usually attain throughputs within this order of
magnitude. To reach higher performance it is common practice to use hardware accelerators
or specialized co-processors respectively, whenever a high-performance signing system is
built.

This paper presents a hardware accelerator for SPHINCS-256. To the authors’ knowl-
edge, this is the first publication of a SPHINCS hardware architecture. In the next section,
the idea of hash-based signature schemes is summarized and the SPHINCS-256 scheme is
recalled. In sections 3 and 4, the architecture is described in detail and its performance
is analyzed. To evaluate the performance, a comparison with other signature schemes is
made in section 5. Throughout the whole paper, the following notations are used:

� unsigned addition modulo 232

⊕ bitwise XOR

≪ k rotation by k bits to the left on a 32-bit data word

← value assignment

a||b concatenation, a contains the less significant bits

2 Hash-Based Signatures
Using cryptographic hash functions (digest = f(seed)) for signing is not at all a new idea.
As early as 1979, Lamport [Lam79] introduced a signature scheme which is today referred
as one-time signature (OTS). To sign one bit, the private key consists of a pair of random
data seeds of size n. Function f is evaluated twice, both private seeds are used as input

20 FPGA-based Accelerator for SPHINCS-256

once. Both resulting outputs, two digests of size n, form the public key. Depending on the
bit value which is signed (0 or 1), the signature consists of the first or second random data
seed. To sign a message digest of size n, this procedure is expanded to n bits. Hence, both
keys expand to 2n2 bits, and the signature expands to n2 bits.

The security of this approach is based on the hardness of inverting the hash function
f . Many hash functions are reported in the literature and most of them have not been
broken yet by any (quantum-) attack. Together with the fact that hash functions are
well understood and widely analyzed, Lamport’s OTS approach could have been a hot
candidate for post-quantum signing. However, Lamport’s OTS turns out to be unpractical,
because a key pair can only be used once.

2.1 Merkle Tree
To address this issue, Merkle published a method which allows many signatures related
to a single public key [Mer89]. 2H OTS key pairs are merged in a balanced binary tree
of depth H. An example with H = 2 is shown in Figure 1. The OTS private seeds are
represented as Xi, and the corresponding OTS public keys as Yi. The leaves Ni,0 are
calculated as f(Yi). Tree nodes are the digest of its concatenated child nodes (a pair of
neighbor leaves or inner nodes). The root node N0,H is the public key which can be used
for 2H signatures. A signature itself contains a leaf index 0 ≤ i < 2H , the OTS signature
σi including its OTS public key Yi and the authentication path. The authentication path
includes all nodes in the tree which a verifier needs in order to validate the OTS public
key Yi (a verifier calculates the root on his own with Yi and the authentication path). To
verify the signature, σi is first verified using Yi. Then leaf Ni,0 is generated using Yi. Using
Yi and the authentication path, the verifier will then calculate the root. If the resulting
digest is identical to the signer’s public key, the signature is valid.

In the example from Figure 1 with H = 2, a signature for i = 2 consists of σ2 (the
signature part from the OTS scheme), Y2 (the OTS public key), and N3,0 and N0,1 (the
authentication path).

N0,2

N0,1

N0,0

Y0

X0

N1,0

Y1

X1

N1,1

N2,0

Y2

X2

N3,0

Y3

X3

Figure 1: This Merkle tree compresses four OTS public keys into N0,2. A signature for
i = 2 consists of σ2, Y2, N3,0, and N0,1.

Several other improvements have been made since Lamport’s OTS. These include OTS
compression (WOTS) [Hül13], the use of pseudo-random numbers (PRN) for private seeds
and tree chaining [BGD+06], and a few-time signature (HORS) [BS02]. The evolution and
details of all these improvements are well described in [BDS09].

Dorian Amiet, Andreas Curiger and Paul Zbinden 21

2.2 SPHINCS-256

All previously-mentioned OTS improvements have been combined in the SPHINCS-256
scheme, which makes it quite comprehensive. Signing starts with selecting a leaf address
between 0 and 260 − 1. Based on this address, one of 260 possible few-time signature
(HORS) key pairs is selected. The HORS public key is compressed within a tree structure
of 256 bits. Relating to the tree structure, this part of the signature has been dubbed
HORST. The selected HORST key pair is used to sign the message digest. The leaf address
is then used to pick the corresponding WOTS key pair. Its private key is used to sign the
HORST public key. The WOTS public key is compressed to 256 bits within an unbalanced
tree (L_tree). Together with compressed neighbor WOTS public keys as leaves, a tree of
height 5 is calculated. Its root is treated the same way as the HORST public key before,
i.e., it is signed with another WOTS key pair. The only difference is that the address
shortens from 60 bits down to 55. This procedure is repeated until the leaf address reaches
0 bits. In other words, regardless of which HORST key pair is selected at the beginning,
all authentication paths end up in the same final WOTS tree. The root of this last tree
will finally be the public key of the SPHINCS scheme. This structure is shown in Figure 2.
A more accurate description can be found in the original SPHINCS paper [BHH+15].

In the view of someone implementing a SPHINCS accelerator, the algorithms in use
are the most interesting parts. As PRN source, the hash functions BLAKE-256 and
BLAKE-512 [AHMP10] are being used. PRN words are expanded by the stream cipher
ChaCha12 [Ber08], which will be rewritten in Algorithms 1 to 3. For tree calculations and
WOTS operations, the same permutation as in ChaCha12 (Algorithms 1 and 2) will be
used. This function will be referred to as πChaCha. The previously-described SPHINCS-256
signing will be supplied in Algorithm 6, which calls the tree generation functions from
Algorithm 4 and the authentication path generation Algorithm 5.

2.3 Possible Improvements to SPHINCS

Aumasson and Endignoux suggest several techniques to reduce the signature size [AE17]
(from 41 down to 20-30 kbytes). A modification to HORS would allow to remove two of the
cascaded WOTS trees. Moreover, an algorithm called Octopus would avoid redundancies
in the HORS-tree authentication paths. Another three WOTS signatures could be removed
by significantly increasing the top Merkle tree in size (height 20 instead of 5). The latter
is payed for, however, with processing time, whenever the top tree is processed. Aumasson
and Endignoux argue that this would not be a penalty. Because the identical tree is
used during every signing operation, the tree data could be cashed (stored) instead of
recalculated every time. However, such an FPGA implementation would need 444 BRAMs
(in a Xilinx FPGA) to hold the proposed two Mbytes of data. This would result in 12
times more BRAM resources compared to the SPHINCS-256 implementation introduced
in this work.

Further room for improvement would lie in the choice of the hash functions. In our
opinion, the selection of BLAKE-256 and BLAKE-512 remains insufficiently defended
in the SPHINCS paper, whereas ChaCha12 and πChaCha are well reasoned with their
performance. Independent of the selection, it would be favorable for hardware acceleration
to use a single hash function for all parts within the algorithm. A good choice to strive
high performance might be Gimli [BKL+17], a recently proposed hash function which
exhibits high performance on different platforms. If security analysis and user confidence is
more important than performance, SHA-3 might be a good choice as well. A nice analysis
on SPHINCS performance depending on the choice of the hash function is given in [Köl17].

22 FPGA-based Accelerator for SPHINCS-256

secret data

public data

HORST sk

HORSTpk

HORST tree

HORST signs the
message digest D

HORST tree compresses HORSTpk within
a tree structure into one node of 256 bits

HORST root

WOTS
layer 0

0. WOTS round = WOTSsk

WOTS layer 0 signs HORST root

14. WOTS round = WOTSpk

WOTSL_tree compresses WOTSpkWOTSL_tree

layer 0

WOTS tree

layer 0
WOTS tree compresses 32 WOTSpk

WOTS root layer 0

WOTS layer 1 to 10

WOTS
layer 11

WOTSsk = f(secret key, layer, HORST address)

WOTS layer 11 signs WOTS root layer 10

WOTSL_tree

layer 11

WOTS tree

layer 11

WOTS root layer 11 = SPHINCS public key

Figure 2: Tree structures are the main concept in the SPHINCS-256 scheme. Twelve
WOTS signatures and several trees compress 260 different HORST public keys into the
top root node.

Dorian Amiet, Andreas Curiger and Paul Zbinden 23

Algorithm 1 ChaCha quarterround
Input: a, b, c, d: four 32-bit unsigned integers
Output: a, b, c, d: four 32-bit unsigned integers
1: function Quarterround(a, b, c, d)
2: a← a� b
3: d← (d⊕ a)≪ 16
4: c← c� d
5: b← (b⊕ c)≪ 12
6: a← a� b
7: d← (d⊕ a)≪ 8
8: c← c� d
9: b← (b⊕ c)≪ 7
10: return a, b, c, d

Algorithm 2 ChaCha permutation πChaCha

Input: X = x[0, ...15]: 512-bit vector, cut in sixteen 32-bit integers
Output: X = x[0, ...15]: 512-bit vector, permuted input
1: function πChaCha(X)
2: for i← 0 to 5 do . 12 rounds
3: Quarterround(x[0], x[4], x[8], x[12])
4: Quarterround(x[1], x[5], x[9], x[13])
5: Quarterround(x[2], x[6], x[10], x[14])
6: Quarterround(x[3], x[7], x[11], x[15]) . lines 3 - 6: horizontal round
7: Quarterround(x[0], x[5], x[10], x[15])
8: Quarterround(x[1], x[6], x[11], x[12])
9: Quarterround(x[2], x[7], x[8], x[13])
10: Quarterround(x[3], x[4], x[9], x[14]) . lines 7 - 10: diagonal round
11: return X

Algorithm 3 The ChaCha12 stream cipher
Input: M = m[0...15]: 512-bit vector, cut in sixteen 32-bit integers:

m[0...3] = 128-bit nonce (constant)
m[4...11] = 256-bit key
m[12...13]: 64-bit counter value (with iv0...iv1)
m[14...15] iv2...iv3
l: unsigned integer, number of iterations, 0 < l < 264

Output: M : Same as input, but counter is incremented
V = v0...l−1[0...15]: l pseudo-random data words, each 512 bits wide

1: function ChaCha12(M, l)
2: for i← 0 to l − 1 do
3: vi ← πChaCha(M)
4: for j ← 0 to 15 do
5: vi[j]← vi[j]�m[j]
6: m[12...13]← m[12...13] + 1 . 64-bit counter
7: return V,M

24 FPGA-based Accelerator for SPHINCS-256

Algorithm 4 Tree generation
Input: h: depth of tree

leaves: ≤ 2h data words, tree level 0 = N [i, 0]
Q0...2h−1: level masks
C256: 256-bit constant, ASCII representation of “expand 32-byte to 64-byte state!”

Output: tree: all tree nodes N [i, j] including root node N [0, h]
1: function Tree(leaves, Q, h)
2: N [0...2h − 1, 0]← leaves
3: for j ← 1 to h do
4: for i← 0 to 2h−j − 1 do
5: if exist(N [2i, j − 1]) then
6: if exist(N [2i+ 1, j − 1]) then . both child nodes exists
7: (tmp0||tmp1)← πChaCha(N [2i, j − 1]⊕Q2(j−1)||C256)
8: tmp0 ← tmp0 ⊕N [2i+ 1, j − 1]⊕Q2(j−1)+1
9: N [i, j]← πChaCha(tmp0||tmp1)
10: else . only left child node exists
11: N [i, j]← N [2i, j − 1]
12: else . no child nodes exist
13: N [i, j]← not exist
14: return tree ← N [0...2h − 1, 0...h]

Algorithm 5 Get authentication path from given tree and node index
Input: h: depth of tree

tree: tree including all nodes N [i, j] (0 ≥ j ≥ h, 0 ≥ i ≥ 2h−j − 1)
idx: Node index

Output: auth0...h−1, authentication path for node N [idx, 0]
1: function Auth(tree, h, idx)
2: for j ← 0 to h− 1 do
3: if idx mod 2 == 0 then . idx even, current node is on left side
4: authj ← N [idx + 1, j] . take sibling on right side
5: else . idx odd, current node is on right side
6: authj ← N [idx − 1, j] . take sibling on left side
7: idx ← idx/2
8: return auth0...h−1

Dorian Amiet, Andreas Curiger and Paul Zbinden 25

Algorithm 6 The SPHINCS-256 signing algorithm
Input:

SK1: 256-bit random seed 1, part of private key
SK2: 256-bit random seed 2, part of private key
Q0...31: 32 random mask words, each 256-bit wide, part of both private and public key
M : message to sign (arbitrary length)
root: 256-bit top node of tree chain, part of public key
C128, C256: 128-and 256-bit constant value, respectively

Output:∑
0...1281: signature: size(

∑
0) = 64 bits, size(

∑
1...1281) = 1280·256 bits

root: 256-bit data word (public key consists of Q0...31 and root)
1: function Sign(SK,M)
2: leaf ||itree||nonce4||R2||nonce128 ← BLAKE-512(SK2||M)
3:

∑
0 ← (leaf ||itree||04) . add (5+55)-bit leaf address to signature

4:
∑

1 ← R2 . add R2 to signature
5: D0||D1||...||D31 ←BLAKE-512(R2||M ||root||Q0...31) . 32 indexes of 16 bits
6: layer ← 12 . 4-bit tree layer, part of leaf address
7: S ←BLAKE-256(SK1||layer ||itree||leaf) . seed for HORST private key
8: HORST sk[0...216 − 1]← ChaCha12(C128||S||0128, 215) . 216 private seeds
9: for i← 0 to 216 − 1 do . 216 HORST elements
10: HORSTpk [i]← πChaCha(HORST sk[i]||C256)
11: HORST tree ← Tree(HORSTpk , Q0...31, 16)
12:

∑
2..66 ← HORST tree[0...63, 10] . all nodes of HORST tree layer 10

13: for j ← 0 to 31 do
14:

∑
67+11j ← HORST sk [Dj]

15:
∑

67+11j...76+11j ← Auth(HORST tree, 10, Dj)
16: root ← HORST tree[0, 16] . Tree root node
17: for layer ← 0 to 11 do . 12 WOTS layers
18: S ←BLAKE-256(SK1||layer ||itree||leaf) . WOTS private key seeds
19: WOTSσ[0...66]←ChaCha12(C128||S||0128, 34) . 67 private seeds
20: d0||d1||...||d63 ← root . cut root into 64 unsigned integer, each 4 bits wide
21: d64||d65||d66 ← 960− d0 − d1 − ...− d63 . 960 = 15 · 64
22: for i← 0 to 66 do . 67 WOTS elements
23: for j ← 0 to di − 1 do . skip if di == 0
24: WOTSσ[i]← πChaCha(Qj ⊕WOTSσ[i]||C256)
25:

∑
418+72·layer...484+72·layer ←WOTSσ[0...66]

26: for k ← 0 to 31 do . 32 WOTS key pairs per tree
27: S ←BLAKE-256(SK1||layer ||itree||k)
28: WOTSpk [0...66]←ChaCha12(C128||S||0128, 34) . 67 private seeds
29: for i← 0 to 66 do . 67 WOTS elements
30: for j ← 0 to 14 do
31: WOTSpk [i]← πChaCha(Qj ⊕WOTSpk [i]||C256)
32: WOTSL_tree ← Tree(WOTSpk [0...66], Q0...13, 7)
33: L_root[k]←WOTSL_tree[0, 7]
34: WOTS tree ← Tree(L_root[0...31], Q14...23, 5)
35:

∑
485+72·layer...489+72·layer ← Auth(WOTS tree, 5, leaf)

36: root ←WOTS tree[0, 5]
37: leaf ||itree ← itree||05

38: return
∑

, root

26 FPGA-based Accelerator for SPHINCS-256

3 Architectural Considerations
Based on the SPHINCS-256 scheme, a possible hardware architecture will be designed. In
this section, some important design decisions which affect the whole implementation will
be explained. The first and most important decision is, however, the overall design target:
we will focus on fast signing with moderate use of FPGA resources. The throughput should
be at least as high as the optimized software implementation, and the accelerator should
fit in a reasonably sized FPGA.

3.1 Hash Evaluations per Signature
The most costly parts of the signing process include hash computations of BLAKE-512,
BLAKE-256, ChaCha12, and πChaCha. How many times each function is evaluated is
summarized in Table 1.

Table 1: Hash evaluations per SPHINCS-256 signature: Overhead is the WOTS signature
of the previous tree root without authentication path calculations.

Function Signing Verification
Part Start HORST 12·WOTS Overhead Total Total

BLAKE-256 0 1 384 12 397 0
ChaCha12 0 32,768 13,056 408 46,232 0
πChaCha 0 193,410 437,352 ≈9,000 ≈640,000 ≈9,000

BLAKE-512 2 0 0 0 2 1

By far, the most frequently called hash function is πChaCha, followed by ChaCha12.
Both operations consist basically of 12 ChaCha rounds, which is actually a πChaCha
permutation. ChaCha12 needs only an extra 64-bit counter and an unsigned addition at
the end. However, to reach the goal of fast signing in the SPHINCS accelerator, πChaCha
calculation will have to be either very fast or heavily parallelized.

Compared to πChaCha, both BLAKE functions are called infrequently. BLAKE-512 is
needed twice for signing and once for verification, each at the beginning. These functions
can be called by the main processor before the SPHINCS accelerator is used, or even while
the accelerator is processing a previous signature. Therefore, BLAKE-512 calculations
will not be part of the SPHINCS co-processor. This will also alleviate communications
between the accelerator and the main processor, because the accelerator input data length
may be kept constant. BLAKE-256 calls are more critical. Their inputs and outputs must
be kept private. In addition, BLAKE-256 is called more often than BLAKE-512. However,
a small iterative BLAKE-256 instantiation will suffice for the SPHINCS accelerator.

3.2 One Intermediate Result per Clock Cycle
As explained before, fast or heavily parallelized πChaCha calculations are mandatory for a
high-performance SPHINCS-256 implementation. Both techniques are covered by a fully
unrolled loop pipeline. Such a block is efficient in hardware and generates one result per
clock cycle. However, a highly pipelined block is only meaningful if its pipeline can be
filled. This requirement will define additional design parameters. Firstly, ChaCha12 inputs
and outputs are 512 bits wide. While the full 512 bits output will be used and, therefore,
must be buffered in registers or RAM blocks, only 256-bit data words are needed at the
input. The remaining 256 input bits are constant or a counter value. This fixes data paths
that read from block RAMs to 256 bits and some write paths even to 512 bits. Secondly,
many πChaCha calculations must be data independent to enable pipeline filling.

Dorian Amiet, Andreas Curiger and Paul Zbinden 27

3.2.1 Data Dependencies

To find out how intermediate calculations depend on each other, let us consider an
overgrown design were an arbitrary number of operations can be processed in parallel.
Algorithm 6 might be executed as follows:

1. Signing starts with the BLAKE operation from line 2
(leaf ||itree||nonce(4)||R2||nonce(128))← BLAKE-512(SK2||M).

2. When the leaf address is available, all other BLAKE evaluations can start in parallel.
These are evaluations of the message digest D and all BLAKE-256 computations.

3. HORST: All private seeds can be calculated in parallel by using 215 instances of
ChaCha12 with initialization vectors 0 to 215 − 1.
WOTS: All private seeds of the 12 trees are evaluated using additional 13,056
instances of ChaCha12.

4. HORST: When private seeds are available, all public seeds will be calculated using
216 πChaCha permutations in parallel.
WOTS: 15 serial iterations of πChaCha on every one of the 26,112 private seeds are
needed to generate the public key.

5. HORST: Two iterative πChaCha evaluations per tree level have to be applied. After
16 levels or 32 πChaCha iterations, the HORST root is calculated.
WOTS: Two nested trees have to be calculated to get the WOTS root. The L-tree
calculation with depth 7 is followed by the WOTS tree with depth 5. The parallelized
delay is 24·t(πChaCha).

6. Assuming that M is small and hence digest D is available in the meantime, all
computations are finished. Based on D and the intermediate tree roots, parts of the
generated data are copied to a signature array.

In conclusion, the minimal SPHINCS-256 signing delay due to true data dependencies is

tmin = t(BLAKE-512) + t(BLAKE-256) + t(ChaCha12) + 39 · t(πChaCha). (1)

In contrast to the required 700,000 πChaCha operations, data dependencies are very low.
Hence, the utilization rate of a deep πChaCha pipeline can theoretically exceed 99%.

3.3 Memory
An upper-bound approximation of memory usage can be obtained assuming that every
intermediate result needs to be stored. The HORST tree inclusive private and public seeds
needs 6 MB of storage. Each WOTS hypertree needs another 1.6 MB. This results in
25 MB of total data. While this is not a big deal for a desktop computer and may even fit
in a processor cache memory, it means a big burden for a compact FPGA implementation.
Our target device, a 7-series Xilinx FPGA, contains block RAMs (BRAMs) with 4.5 KB
storage each. Therefore, saving everything would occupy thousands of BRAMs.

A practical lower bound is somewhere around the sum of key and signature size.
Hülsing et al. demonstrated in [HRS15] that even less memory is required to generate
a SPHINCS-256 signature. However, the 41 KB signature will fit into 10 BRAMs. If
12 BRAMs are being used, 256-bit wide data accesses can be implemented efficiently. A
256-bit wide memory consisting of 12 BRAMs contains 1,536 entries. This will be enough
to store the signature, all masks, both key strings, the message digest D, and the leaf
address. Therefore, a RAM block of this size will be perfect for data input and output.
Apart from this I/O RAM, a cache RAM to store intermediate values will be needed. To

28 FPGA-based Accelerator for SPHINCS-256

enable appropriate parallelization, it should store a full WOTS tree (32 · 67 L_tree leaves
at 256 bits). Using 24 block RAMs, a memory with 512-bit write and 256-bit read access
stores 3,072 256-bit data words. This will be sufficient to store 1/64 of the HORST tree.

3.4 Top-Level Architecture
Based on the previous considerations, the top-level architecture is defined. The main
blocks are:

• Control unit: To generate internal instructions for signing and verification

• BLAKE : An iterative, low-speed block that evaluates BLAKE-256

• ChaCha12 : An efficient pipeline calculating ChaCha12 and πChaCha

• I/O RAM : Keys and the signature storage, accessible from outside

• Cache RAM : 256-bit aligned intermediate results storage

Control unit

I/O
RAM

internal:
256·1536
external:
32·12288

Cache
RAM

read:
256·3072
write:

512·1536

BLAKE
(slow)

ChaCha12
(highly

pipelined)

PCIe

addr addr
instruction

addr

PCIe data copy

256 256

512

256

256

Figure 3: SPHINCS-256 co-processor architecture.

4 Implementation Details
In this section, the SPHINCS-256 co-processor is described in more detail. This includes
a description of the control unit, the main processing πChaCha pipeline, implementation
considerations about the BLAKE-256 block, performance results, and finally a side-channel
analysis.

4.1 Control Unit
The control unit is the most intricate block in the design. Both signing and verification
algorithms are stored in its state machine. In a black-box view, the control unit generates
internal instructions based on message digest and leaf address. The used instruction set is
summarized in Table 2. An instruction consists of the following parts:

1. Instruction code: A one-hot encoded automaton, indicating the instruction code

Dorian Amiet, Andreas Curiger and Paul Zbinden 29

2. Valid flag: active-low if the FSM is idle or waiting for an intermediate value

3. The cache-RAM read address

4. The cache-RAM write address

5. The I/O RAM read or write address (depending on the instruction code)

6. The intermediate leaf address that is part of the BLAKE-256 data input

Table 2: Internal instruction set.

Instruction
RAM Addr Input Data

Logic
Result, Data Output

Name
Cache I/O Read from (RAM, Size

Operation
Store at Size

rd wr r/w Register, Const C) [bit] (RAM, Register) [bit]
ChaCha12 - X - C128||blake||count 512 ChaCha12 @wr, @wr+1 512
πChaCha X X - @rd||C256 512 πChaCha @wr 256
⊕πChaCha X X X (@rd⊕@I/O)||C256 512 πChaCha @wr 256
⊕πChaCha1 X X - (@rd⊕@I/O)||C256 512 πChaCha tmp (register) 512
⊕πChaCha2 X X X tmp⊕@rd⊕@I/O 512 πChaCha @wr 256
BLAKE-256 - - X leaf address||@I/O 320 BLAKE-256 blake (register) 256
Move to I/O X - X @rd 256 - @I/O 256

Move to Cache - X X @I/O 256 - @rd 256
Move to Ctrl - - X @I/O 256 - control unit 256

Is Equal X - X @rd, @I/O 512 == control unit 1

Internally, the control unit is basically a nested finite-state machine (FSM) as shown
in Figure 4. A master FSM controls several slave FSMs that generate the respective
instructions. A slave FSM, for example, includes the tree-generation Algorithm 4. When
the corresponding slave FSM is done, an appropriate control signal will inform the master
FSM which in turn will start the next slave FSM.

Master
FSM

HORST sign
WOTS sign

HORST verify
WOTS verify

start
done start
done start
done start
done

Instruction mux

start
sign

start
verify

done select

Instruction out

Figure 4: A Master FSM controls several slave FSM to reduce the number of states in
one FSM.

The nested FSM architecture has some disadvantages though. It tends to take up
more silicon area than a direct single FSM, and the sequence of states is less clear in the
VHDL code. However, as fewer states are contained in an individual FSM, path lengths
are shorter, which permit higher clock speeds.

30 FPGA-based Accelerator for SPHINCS-256

Another design could have chosen to store all the instructions in several block RAMs.
However, since instructions depend on D (the leaf address) and intermediate results (root
nodes), a sizable logic block to calculate RAM addresses would have been required anyway.
Therefore, great area savings would not have been anticipated.

4.2 ChaCha12 Pipeline
Before we dive into the description of the deep πChaCha pipeline, this section will cover the
wrapper around it. The ChaCha12 unit is involved in six different internal instructions. A
wrapper around the πChaCha part handles the instruction type. The wrapper input signals
are: the instruction code, a 256-bit data word from cache RAM, a 256-bit data word
(mask) from I/O RAM, the output of BLAKE, and the RAM write address for the result.
Whenever a valid ChaCha12 instruction is received, the BLAKE output and the actual
ChaCha12 counter value are routed to the πChaCha pipeline. In addition, the counter
is incremented to be ready for the next ChaCha12 instruction. A valid BLAKE-256
instruction resets the counter such that a new ChaCha12 stream will restart at zero.
Besides input routing, both input data and write address are forwarded to a shift register.
The input data reaches the end of the shift register simultaneously with the result from the
πChaCha permutation. Following the ChaCha12 algorithm, inputs and outputs are added:
word by word, 32-bit-aligned and without carry propagation between words. After the
final addition, all 512 data bits and the write address are sent to cache RAM.

If one of the ⊕ requesting πChaCha instructions is received, inputs from cache RAM and
I/O RAM are immediately xor-ed. The result is expanded with the constant (C256 = the
ASCII representation of “expand 32-byte to 64-byte state!”) and forwarded to the πChaCha
pipeline. After execution, the lower 256 bits are written to cache RAM. One exception to
this procedure occurs in tree calculations when instructions ⊕πChaCha1 and ⊕πChaCha2
are executed. The control unit ensures that these instructions are always issued side by
side. In other words, whenever the ⊕πChaCha1 instruction is issued, a ⊕πChaCha2 follows
during the next clock cycle. The ⊕πChaCha1 is forwarded directly to the pipeline. Data
associated with ⊕πChaCha2 will be forwarded to the shift register. When ⊕πChaCha1 has
finished, the result is not forwarded to RAM, but directly xor-ed with the ⊕πChaCha2 data
and then again processed in the πChaCha pipeline. After this second loop, the resulting
lower 256 bits will be sent to cache RAM.

As already mentioned in section 3, the πChaCha pipeline is fully unrolled such that
one result per clock can be evaluated. Regarding the πChaCha Algorithm 2, lines 3 - 6
and 7 - 10 can be calculated in parallel, which will reduce processing delay. Note that
parallel instantiation does not influence area usage in this case, because in a fully unrolled
pipeline, a serial approach would also need four quarterround blocks per ChaCha round.
Besides enabling high throughput, full unrolling has the advantage that there is no need
for a multiplexer in the πChaCha pipeline. Hence, all connections are hard-wired between
quarterround blocks. This fact is illustrated in Figure 5. Since there is no logic between
the quarterround blocks, a well-designed pipeline in the quarterround block leads to a
well-structured design in the whole πChaCha pipeline.

It is worth analyzing the quarterround Algorithm 1 in more detail. On lines 2 - 5 and
6 - 9, the same operations are executed. The only difference is the number of bits in the
left-rotation operation. However, to design the pipeline, it is sufficient to consider lines
2 - 5 in the first step. In this short sequence, all variables (a, b, c, d) are assigned once. It
seems straightforward to place one pipeline stage at the end of this sequence (between line
5 and 6) to get the following efficient structure: pipeline stage → small logic → pipeline
stage. Unfortunately, lines 3 - 5 each depend on data from the previous line. Hence, the
logical data path for b in lines 2 - 5 is

�→ ⊕→≪ 16→ �→ ⊕→≪ 12. (2)

Dorian Amiet, Andreas Curiger and Paul Zbinden 31

512-bit data in

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

a b c d
quarterround
a b c d

ChaCha round 2-11: 40 quarterround blocks

512-bit data out

Figure 5: The ChaCha12 pipeline instantiates the quarterround block 48 times.

As rotations by n bits (≪) are constant they come for free in hardware: Rotations are
realized in the FPGA by inter-slice routing, which has to be done anyway. The remaining
two operations (� and ⊕) need logic primitives such as flip-flops (FFs), look-up tables
(LUTs), and carry chains. Translated to Xilinx 7-series FPGA logic, the critical path of
equation 2 leads to

FF out 2-input LUT→ carry-chain (8x) 3-input LUT
→ carry-chain (4x) 2-input LUT→ FF in,

(3)

where→ represents short connections within a slice and long connections between slices.
This structure has high inherent delay, mainly because of the three inter-slice nets ().
Note that although carry chains include transfer through different slices, these nets are
short.

It is easy to cut the path from equation 2 in almost half by adding an additional
pipeline stage in the middle (between lines 3 and 4). The logic path shortens to

�→ ⊕→≪ 16, (4)

leaving the remaining critical path in the FPGA to

FF out 2-input LUT→ carry-chain (8x) 2-input LUT→ FF in. (5)

Although this path is already quite short, it still has two connections between slices. By
rearranging the stages, one of the inter-slice connections can be eliminated. Instead of
having registers after lines 3, 5, 7 and 9, respectively, it is more efficient to place them
after lines 2, 4, 6 and 8, respectively. The logic path for lines 3 and 4 results in

⊕ →≪ 16→ �. (6)

This way, the rotation has again to be taken into account, because it is done in the routing
(), which should be eliminated. Due to associative properties of ⊕ and≪, the operations
can be exchanged

(d⊕ a)≪ 16 ≡ (d≪ 16)⊕ (a≪ 16). (7)

32 FPGA-based Accelerator for SPHINCS-256

The critical path finally gets down to

FF out 3-input LUT→ carry-chain (8x)→ FF in. (8)

A quarterround block is composed of three constructions as described above and some
additional input and output logic (in lines 2 and 9). Since several blocks are instantiated in
series without any logic blocks in-between, lines 2 and 9 form together the same construct.
The quarterround block diagram is shown in Figure 6 and includes some information about
area usage.

32FF 32FF 32FF 32FF

32FF 32FF 32FF 32FF

32FF 32FF 32FF 32FF

32FF 32FF 32FF 32FF

�
a b c d

� ⊕ ≪16≪16

� ⊕≪12 ≪12

� ⊕ ≪8≪8

⊕≪7 ≪7

c da b

32 2-input LUT
32 flip-flops

32 3-input LUT
8 carry-chain blocks
32 flip-flops

32 2-input LUT
32 3-input LUT
8 carry-chain blocks
128 flip-flops
=> 16 slices

line 2

3, 4

5, 6

7, 8

9

Figure 6: Quarterround, Algorithm 1

4.3 BLAKE
The BLAKE-256 function is called 397 times during signing, but is not used in verifying. In
our implementation, the first call to BLAKE-256 stalls the whole SPHINCS accelerator. All
other BLAKE-256 evaluations are executed in parallel to ChaCha computations. That is
why its processing delay is negligible. The design goal for this unit is therefore minimizing
area usage. Although the BLAKE-256 evaluation delay is not critical, the unit is designed
to run at high clock speed. This allows the usage of the same clock as in the rest of the
SPHINCS core, which gives the tools more freedom in the placing process (all flip-flops
within a slice must be driven by the same clock).

A structural advantage of BLAKE-256 is that the input size is always 40 bytes (32 + 8
bytes for private seed and leaf address). Therefore, padding is constant and integrated in
the initialization vector. In addition, the size is small enough, such that the compression
function is called just once. The internal BLAKE unit structure consists of a small pipeline,
some distributed RAM, and a control unit. The latter consists of a LUT ROM, which
stores a small program and a program counter. It generates all control signals (RAM
addresses, enable signals and multiplexer selects). Since all data paths are 32-bit aligned
in the BLAKE unit and 256-bit aligned in the rest of the SPHINCS accelerator, an extra
input multiplexer and a parallel accessible output shift register are needed.

Dorian Amiet, Andreas Curiger and Paul Zbinden 33

All variables are filled into four distributed RAMs, each of which is 32 bits wide and
stores four data words. These RAMs are directly connected to the arithmetic pipeline.
Except for some extra round based constant look-up, the logic operations within the
arithmetic pipeline have a similar shape as the ChaCha quarterround. Therefore, the same
pipelining ideas as in the quarterround block can be applied.

4.4 Critical-Path Shortening
When we started with an initial working architecture of the SPHINCS accelerator, its
performance already matched our goals (which we stated at the beginning of section 3).
Implemented on a Kintex-7 device, the initial architecture occupied roughly 20,000 LUTs,
signing took of 4.2 milliseconds, and the maximum clock speed was 175 MHz.

The signing latency was mainly caused by the 640,000 πChaCha evaluations. Hence, to
reduce signing latency further, the ChaCha performance had to be increased. This could
have been reached by using more parallelization, utilizing the πChaCha pipeline better,
or speeding up the operating clock. If the πChaCha pipeline had been instantiated twice,
also all other blocks would have had to be increased. Instancing the whole SPHINCS
core several times might have ended up in a more efficient way to multiply the overall
throughput than using multiple πChaCha pipeline instances within one core. The second
strategy, utilizing the πChaCha pipeline better, did not exhibit much potential, because the
pipeline was already filled quite well (see section 4.5). The third option, using a higher
clock frequency, promised the biggest performance improvement.

Because a fully unrolled πChaCha pipeline produces one result per clock cycle, its
throughput is linear to its operating clock frequency. To increase both clock frequency
and throughput, the critical path has to be minimized. In Xilinx FPGAs, path delays are
dominated by the number of cascaded logic elements (LUTs, carry chains, muxes etc.) and
net delays. The particular path with the highest delay is defined as the critical path, the
inverse of which defines the maximum clock frequency. To shorten this path, several steps
have to be stepped through:

1. After placing and routing of the whole design by the Xilinx tools, all path delays are
calculated and several slow paths are reported.

2. A detailed analysis of the critical path identifies why the path is slow (many cascaded
logic elements or high net delays).

3. The path may be shortened by making changes to the RTL code (VHDL or Verilog).

(a) If a path is slow because of cascaded logic, it usually depends on many other
signals. Such a path may be shortened by adding pipeline stages (see section
4.2 for an example). If the cascade is provoked by a poor logic construct, simply
rewriting the RTL code (e.g. replacing nested if-then-else by a case statement)
may already shorten the path.

(b) If a path is exhibiting a high net delay because of a FF output driving many
endpoints (referred to as high fan-out), replication may be a solution. This
means that the FF is “copied” by forwarding its input signal to several other
FFs such that they all hold the same value at any time. A single FF then has
to drive only a fraction of what the original FF had to drive.

(c) If a path exhibit high net delays because of a far traversal within the FPGA, a
solution may be inferring an additional FF (i.e., adding a pipeline stage). If
placed somewhere in the middle, its net delay is almost cut in half.

4. Whenever an additional pipeline stage is inserted, the logic delay in clock-cycle count
increases. This may require far-reaching modifications to the whole design to keep
its correct execution.

34 FPGA-based Accelerator for SPHINCS-256

1

2

3

4

Development Time

Si
gn

in
g
D
el
ay
,m

s

10,000

20,000

30,000

40,000

LU
T
,

FF

Figure 7: Signing latency has greatly been reduced without using significantly more LUTs.

By iteratively shortening all long paths, the critical path delay in the SPHINCS core
decreased continuously. Consequently, the clock frequency could be increased, which
simultaneously decreased the overall signing delay. As shown in Figure 7, the price for path
shortening was mainly paid by higher FF usage. The moment to quit path shortening is
defined by the FPGA structure. In 7-series Xilinx FPGAs, two FFs per LUT are placed in
silicon. Path shortening was stopped when this rate was reached. Further path shortening
would have become inefficient. A higher FF-to-LUT rate would have occupied many slices
by FFs only. Because FFs are much smaller than LUTs this would have just been a waste
of silicon area within the FPGA.

4.5 Performance Results
SPHINCS signing has been measured to take 804,500 clock cycles. Relating to some
687,000 πChaCha and ChaCha12 evaluations, the πChaCha pipeline capacity utilization is
at 85%. The remaining 15% empty pipeline slots are mainly caused by data dependencies
whenever tree top levels are evaluated. As stated in section 3.2.1, a higher pipeline usage
would theoretically be possible, but it would be inefficient. If, e.g., calculations from the
next tree starts before the present tree calculations are finished, the πChaCha pipeline would
be utilized better, but the control unit would increase disproportionately in complexity
and area usage.

Signature verification takes less than 35,000 clock cycles. The πChaCha pipeline has a
usage of roughly 4% only. This is due to two reasons: First, much more data dependencies
have to be taken into account. Second, since verifying is already 20 times faster than
signing, less parallelization effort has been spent in order to keep the control unit smaller
and simpler.

The SPHINCS accelerator was synthesized and implemented by Vivado 2017.2 on
different target FPGAs. The smallest 7-series device the SPHINCS accelerator would fit
in, is the $30 Artix XC7A35T-1. On this device, the clock runs at 280 MHz resulting in
2.9 ms signing time. On the high-end side of available FPGAs, the SPHINCS co-processor
runs at 770 MHz on a Virtex UltraScale+ resulting in 1.04 ms signing time.

Note that all performance results presented in this paper are related to the Kintex-7
device XC7K325T-2. On this FPGA, the clock runs at 525 MHz and signing takes 1.53 ms.
In Table 3, the hardware utilization of the SPHINCS core is shown, broken down to units.
Over two thirds of occupied LUTs and FFs are utilized by the πChaCha pipeline. During
the design phase, a balanced utilization has been striven for: 9.4% LUT, 9.4% FF, and
8.1% BRAM are being used in this device. This enables compact placing and therefore
the utilization of high clock speeds, even if an FPGA is filled with multiple instances of

Dorian Amiet, Andreas Curiger and Paul Zbinden 35

the SPHINCS cores. In addition, three (corresponding to 0.4%) of the DSP blocks are
assigned to the control unit to calculate RAM addresses.

Table 3: Area utilization of the SPHINCS core.1

Module LUTs FFs BRAM Slices
Control Unit 1,946 2,827 0 788
I/O RAM 1,138 1,546 12 747
Cache RAM 777 3,020 24 1,160
BLAKE-256 870 1,483 0 415
ChaCha12 13,305 27,060 0 4,807

SPHINCS Core 19,067 38,132 36 7,306

4.6 Side-Channel Analysis
Work on measuring side channels and attacking the accelerator is still in progress and
detailed results cannot be presented at this stage. However, some theoretical considerations
suggest that two parts in the signing algorithm tend to be susceptible to side-channel
attacks. The first conspicuous event happens in Algorithm 6 in lines 10 to 13, when the
HORST tree calculation is executed. Due to memory limitations, tree generation is split
into 64 parts. Whenever a Dj indicates a leaf in the current part, the private HORST seed
as well as the authentication path are copied to I/O RAM. Due to timing delays originating
from the copy process, an attacker may collect information about D0...31. However, an
attacker would find public information only here (i.e., the message digest).

A second obvious leak is found in lines 21 and 22. The for-loop “for j ← 0 to di − 1” is
implemented in a loop that counts from 0 to 14. The following πChaCha operation is only
executed if j < di by using an enable signal. That way, the loop is executed in constant
time, but a simple power analysis attack will leak information about d0...66. Since all tree
roots have to be in public domain anyway, this information does not help an attacker
either.

In the perspective of an attacker, the most interesting values are BLAKE-256 input
SK1, BLAKE-256 output S, and all ChaCha12 outputs. Both involved functions BLAKE-
256 and ChaCha-12 are processed in constant time. Further research will show whether
these values can be extracted over some sort of side channels.

5 Comparison
To the authors’ knowledge, this is the first reported hardware-based SPHINCS-256 imple-
mentation. Therefore, direct comparisons between our implementation and other published
SPHINCS-256 hardware architectures are not possible. However, three other kinds of
comparisons are presented in this section: In 5.1, we show that our accelerator signs an
order of magnitude faster than the software-based implementation published in the original
SPHINCS paper [BHH+15]. In 5.2, a comparison between our arithmetic blocks and hash
implementations published in [ABO+14] show the high efficiency of our πChaCha pipeline.
Finally, a comparison with other hardware-accelerated signature schemes shows in 5.3 that
our SPHINCS co-processor outperforms today’s widely used RSA signature scheme.

1Note that the numbers are post-implemented hierarchical utilization results from the Xilinx tool. They
may be wrong because some logic parts that belong to a module may have been moved to another during
optimization. In addition, slices can be shared by different modules (the sum from all modules is therefore
bigger than the total number of used slices).

36 FPGA-based Accelerator for SPHINCS-256

5.1 SPHINCS-256 Accelerator vs. Software Implementation
The original SPHINCS paper [BHH+15] presents performance results from an optimized
vector processor implementation. The signing delay is reported as 51,636,372 cycles at a
clock speed of 3.5 GHz. This corresponds to 14.75 ms delay. Our FPGA implementation
features 1.53 ms signing delay, which is almost ten times faster. The acceleration can
be explained as follows: The software-based implementation calculates eight πChaCha
permutations in 420 clock cycles. On average, one πChaCha result is produced every 15 ns.
The FPGA implementation produces one result per clock cycle, which is 1.9 ns. This
gets already a speed-up factor of eight. A second effect is that the FPGA implementation
does not have any overhead for pointer and index updates, because all such things are
handled in the control unit and computed in parallel to ChaCha calculations. Signature
verification with 414 µs vs. 65 µs delay is 6.3 times faster in the FPGA implementation.
This comparison shows that the SPHINCS-256 scheme fits very well into hardware and
especially FPGAs.

5.2 Hash Functions
The πChaCha pipeline represents the main core in the SPHINCS accelerator. The ChaCha12
unit takes 13,305 LUTs and 27,060 FFs, or roughly 4,800 slices. The throughput is
512 bits · 525 MHz = 269 Gbits/s. Divided by the 4,800 slices occupied, a performance
indicator of 56 Mbits/(s·slice) results. The ChaCha architecture reported by At et al in
[ABO+14] reaches a throughput of 422 Mbits/s at an area usage of 49 slices and 2 BRAMs.
If BRAMs are ignored, the throughput per slice equals to 8.61 Mbits/(s·slice). Compared
that way, the ChaCha pipeline in the SPHINCS accelerator is 6.5 times more efficient.
Most of this comes from positive effects of pipeline unrolling. One may argue that this
comparison is not fair, because the storage management is not included in the SPHINCS
accelerator ChaCha12 unit. This is true, but even when the full SPHINCS co-processor,
including control unit and BLAKE unit, is considered, an efficiency factor of 4.3 is still
remaining. Putting it into Mbits/(s·BRAM usage), the SPHINCS accelerator performs 35
times better.

Regarding the BLAKE-256 unit, our implementation occupies 415 slices and runs
with 525 MHz on the Kintex-7 device. At et al. report an architecture occupying 50
slices, 2 BRAMs and running at with 349 MHz on a Virtex-6 device. At’s BLAKE-256
architecture needs 8.3 times less slices than our BLAKE-256 unit. Part of this discrepancy
can be explained by not using BRAM (data and instructions are stored in LUTRAM) in
our BLAKE-256 implementation. The SPHINCS co-processor already needs a notable
amount of BRAMs, therefore BRAMs are not used in arithmetic units. Another notable
amount of hardware is used to fit the 32-bit aligned BLAKE-256 unit into the 256-bit
aligned SPHINCS accelerator.

5.3 SPHINCS-256 vs. Other Signing Schemes
A comparison to other signing algorithms is summarized in Table 4. This classifies rater
the SPHINCS scheme than the actual hardware architecture. FPGA implementations can
be built smaller at the price of more delay, or faster at the price of increased area usage,
respectively. A reasonable figure of merit is the so-called area-time (AT) product. As a
starting point, the SPHINCS accelerator is compared to the widely used RSA signature
scheme. Even though the implementation of [SA14] is smaller than our SPHINCS core,
the RSA signature scheme is clearly less efficient because of its signing delay. A signature
scheme more frequently used in recent years is ECDSA. On a similar security level (only
on classical computers), the ECDSA co-processor published in [ACZ16] and our SPHINCS
accelerator are in the same performance range. Besides post-quantum security, SPHINCS-

Dorian Amiet, Andreas Curiger and Paul Zbinden 37

256 has the advantage that verifying is only a fraction of the signing cost, while verification
in ECDSA is at least as slow as signing.

Table 4: Our SPHINCS accelerator is more efficient than today’s widely used RSA.

Ref Scheme
Security

FPGA
Area f t AT

Classic PQ LUT/FF/DSP/BRAM MHz ms s·LUT
this SPHINCS-256 256 128 K7 19,067/38,132/3/36 525 1.53 29.4

[ACZ16] ECDSA-256 128 0 V7 6,816/4,442/20/0 225 1.49 10.2
[ACZ16] ECDSA-521 256 0 V7 8,273/7,689/64/0 161 5.02 41.5
[SA14] RSA-2048 112 0 V7 3,558 slices/54/0 399 5.68 ≈60
[PDG14] BLISS-IV 192 ? S6 6,438/6,198/5/7 135 0.35 2.25
[BHH+15] SPHINCS-256 256 128 Haswell CPU E3-1275 (1 core) 3500 14.7 -

The complex post-quantum secure, lattice-based BLISS signature scheme is an order
of magnitude more efficient than our SPHINCS core. In [PDG14], even faster versions
of BLISS (with lower security levels) are reported. However, using SPHINCS has the
advantage that its security is fundamentally based on the difficulty of breaking the
underlying hash function, which is well analyzed and well understood while the security of
BLISS is not that clear (see section 1).

6 Future Work
Among the highest priorities for future works are side-channel analyses. This will go
along with the implementation of possible countermeasures. Also, if the software-based
BLAKE-512 calculation looks as if it will become a limiting factor in the whole signing
system, a BLAKE-512 unit will have to be added to the SPHINCS accelerator.

7 Conclusion
We showed that the SPHINCS signature scheme can be extensively parallelized. All
logic operations in the scheme are based on bit rotation, xor, and unsigned addition.
Therefore, the algorithm fits very well into an FPGA. A comparison to a software-based
implementation supports this statement. To the authors’ knowledge, this paper presents
the first hardware architecture that accelerates SPHINCS-256 signing, key generation
and signature verification. Thousands of signatures per second can be generated on an
FPGA if our SPHINCS accelerator is instantiated several times. Signing delay is around
1.53 ms, and verification takes just 65 µs. Compared to the optimized vector-processor
implementation, the presented SPHINCS accelerator signs an order of magnitude faster.
A comparison to FPGA-based implementations of the classical signature schemes RSA
and ECDSA shows that the SPHINCS accelerator performance is highly competitive.

Acknowledgments
We thank the anonymous reviewers for their accurate reviews and their valuable comments.
This work was supported by the Commission for Technology and Innovation CTI (also
known as Innosuisse). CTI is the federal agency responsible for encouraging science-based
innovation in Switzerland.

38 FPGA-based Accelerator for SPHINCS-256

References
[ABO+14] Nuray At, Jean-Luc Beuchat, Eiji Okamoto, Ismail San, and Teppei Yamazaki.

Compact Hardware Implementations of ChaCha, BLAKE, Threefish, and Skein
on FPGA. IEEE Trans. on Circuits and Systems, 61-I(2):485–498, 2014.

[ACZ16] Dorian Amiet, Andreas Curiger, and Paul Zbinden. Flexible FPGA-Based
Architectures for Curve Point Multiplication over GF(p). In 2016 Euromi-
cro Conference on Digital System Design, DSD 2016, pages 107–114. IEEE
Computer Society, 2016.

[AE17] Jean-Philippe Aumasson and Guillaume Endignoux. Improving Stateless
Hash-Based Signatures. Cryptology ePrint Archive, Report 2017/933, 2017.

[AHMP10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C W Phan.
SHA-3 proposal BLAKE. SHA3 competition, 2010. http://www.131002.net/
blake/blake.pdf.

[BDS09] Johannes Buchmann, Erik Dahmen, and Michael Szydlo. Hash-based Digital
Signature Schemes. In Daniel J. Bernstein, Johannes Buchmann, and Erik
Dahmen, editors, Post-Quantum Cryptography, pages 35–93. Springer Berlin
Heidelberg, 2009.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20, 2008. http://cr.yp.to/
chacha/chacha-20080120.pdf.

[BGD+06] Johannes A. Buchmann, Luis Carlos Coronado García, Erik Dahmen, Martin
Döring, and Elena Klintsevich. CMSS - An Improved Merkle Signature Scheme.
In Progress in Cryptology - INDOCRYPT 2006, volume 4329 of LNCS, pages
349–363. Springer, 2006.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: Practical Stateless Hash-Based Signa-
tures. In Advances in Cryptology - EUROCRYPT 2015, volume 9056 of LNCS,
pages 368–397. Springer, 2015.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli: a cross-platform
permutation. Cryptology ePrint Archive, Report 2017/630, 2017.

[BL17] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography - dealing
with the fallout of physics success. Cryptology ePrint Archive, Report 2017/314,
2017.

[BS02] Lynn Margaret Batten and Jennifer Seberry. Better than BiBa: Short One-
Time Signatures with Fast Signing and Verifying. In Information Security and
Privacy, ACISP 2002, volume 2384 of LNCS, pages 144–153. Springer, 2002.

[HRS15] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. ARMed SPHINCS –
Computing a 41KB signature in 16KB of RAM. Cryptology ePrint Archive,
Report 2015/1042, 2015.

[Hül13] Andreas Hülsing. W-OTS+ - Shorter Signatures for Hash-Based Signature
Schemes. In Progress in Cryptology - AFRICACRYPT 2013, volume 7918 of
LNCS, pages 173–188. Springer, 2013.

http://www.131002.net/blake/blake.pdf
http://www.131002.net/blake/blake.pdf
http://cr.yp.to/chacha/chacha-20080120.pdf
http://cr.yp.to/chacha/chacha-20080120.pdf

Dorian Amiet, Andreas Curiger and Paul Zbinden 39

[Köl17] Stefan Kölbl. Putting Wings on SPHINCS. Cryptology ePrint Archive, Report
2017/898, 2017.

[Lam79] Leslie Lamport. Constructing Digital Signatures from a One Way Function.
SRI International, CSL-98, 1979.

[Mer89] Ralph C. Merkle. A Certified Digital Signature. In CRYPTO ’89 Proceedings
on Advances in Cryptology, pages 218–238. Springer-Verlag New York, Inc.,
1989.

[Mos15] Michele Mosca. Cybersecurity in an era with quantum computers: will we be
ready? Cryptology ePrint Archive, Report 2015/1075, 2015.

[Nat09] National Institute of Standards and Technology. Digital Signature Standard
(DSS). FIPS-PUB 186-4, 2009.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based
signatures on reconfigurable hardware. In Cryptographic Hardware and Em-
bedded Systems - CHES 2014, volume 8731 of LNCS, pages 353–370. Springer,
2014.

[RSA78] R L Rivest, A Shamir, and L Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[SA14] Ismail San and Nuray At. Improving the computational efficiency of modular
operations for embedded systems. Journal of Systems Architecture - Embedded
Systems Design, 60(5):440–451, 2014.

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing,
26(5):1484–1509, 1997.

	Introduction
	Hash-Based Signatures
	Merkle Tree
	SPHINCS-256
	Possible Improvements to SPHINCS

	Architectural Considerations
	Hash Evaluations per Signature
	One Intermediate Result per Clock Cycle
	Memory
	Top-Level Architecture

	Implementation Details
	Control Unit
	ChaCha12 Pipeline
	BLAKE
	Critical-Path Shortening
	Performance Results
	Side-Channel Analysis

	Comparison
	SPHINCS-256 Accelerator vs. Software Implementation
	Hash Functions
	SPHINCS-256 vs. Other Signing Schemes

	Future Work
	Conclusion

